تقویت‌کننده

آمپلی فایر یا تقویت کننده های الکترونیکی در موسیقی برای تقویت صدای سازهای پیکاپ داری مانند گیتار الکتریک، گیتار باس، ویولون و ... استفاده می شود.






عملکرد دستگاه

امپلی فایرها در به طور عمده دارای دو مدار الکتریکی به نام دریافت سیگنال صدا (Pre Amp) و تقویت کنندهٔ صدا (Power Amp) هستند. از مهمترین قطعاتی که در کیفیت صدای یک امپ بسیار مهم است وجود یک لامپ خلا می‌باشد. در گذشته در تمامی آمپلی فایرها از لامپ خلا استفاده می شد اما با گذشت زمان و روی کار آمدن ترانزیستورها، جایگزین مناسبی برای لامپ‌های خلأ به میدان آمد که از لحاظ هزینه بسیار کمتر از لامپ‌های خلأ بود. اما صدای تولید شده از خازن‌ها هیچگاه کیفیت صدای تولید شده توسط لامپ‌های خلأ را نداشت و به همین دلیل در بسیاری از موارد حرفه‌ای از همان لامپ‌های خلأ قدیمی استفاده می‌شود.





بلندگوی لسلی
بلندگوی لسلی ( بلندگوی گردان ) (به انگلیسی: Leslie Speaker) ساختاریست تشکیل شده از تقویت کننده/بلندگو که برای ایجاد تغییر در صدا با استفاده از اثر داپلر توسط دانلد لسلی اختراع شده.





تقویت‌کننده الکترونیکی

تقویت کننده الکترونیکی وسیله‌ای برای افزایش توان سیگنال می‌باشد. تقویت کننده شکل سیگنال ورودی را حفظ کرده اما دامنه بزرگتر آن را بزرگتر می‌کند.

از تقویت کننده ها برای تقویت صدای سازهای مانند گیتار الکتریک، گیتار باس، ویولن برای تقویت انواع خروجی های صدا مانند دستگاه های پخش خانگی، دستگاه های پخش خودرو و برای تقویت صداهای ضبط شده در مسیر دستگاه های ضبط صدا در استودیو های صوتی استفاده می شود.





بلندگو

بلندگو به گونه‌ای دستگاه مبدل انرژی گفته می‌شود که انرژی الکتریکی را به صدا تبدیل می‌کند. واژه بلندگو ممکن است تنها به یک ترانسدیوسر (که به آن درایور گویند) و یا به سیستمی شامل چندین درایور و همچنین دیگر قطعات الکترونیکی اطلاق شود. بلندگو بخشی از هر سیستم صوتی است و معمولاً تفاوت کیفیت در سیستم‌های صوتی ناشی از این بخش است و بیشترین اعوجاج در صدا در این بخش صورت می‌گیرد.






تاریخچه

فیلیپ رئیس یک بلندگوی الکتریکی را در سال ۱۸۶۳ در تلفن خود نصب کرد که قادر بود صدایی واضح را مجددا تولید کند.





بلندگوی رایانه
بلندگوی رایانه (به انگلیسی: Computer speaker) دستگاهی از دسته سخت‌افزار رایانه است که وظیفه‌ی انتقال صوت به بیرون از رایانه را دارا می‌باشد؛ این دستگاه‌ها بیشتر دارای یک آمپلی‌فایر (تقویت‌کننده الکترونیکی) داخلی با قدرت کم هستند.ارتباط صوتی استاندارد این دستگاه‌ها با رایانه از طریق کابل ۳٫۵ میلی متری (حدود یک هشتم اینچ) که رابط تی‌آراس نام دارد و اغلب به رنگ سبز مغزپسته‌ای است برقرار می‌شود.





مانیتور استودیو

مانیتور استودیو نوعی از بلندگوها است که برای تولید برنامه‌های کاربردی مخصوص استودیو ضبط کاربرد دارد. فرق این بلندگوها با بلندگوهای معمولی در این است که صدای خارج‌شونده از این دستگاه‌ها فاقد هرگونه تغییر و بیس بوده و صرفاً هرآنچه که درآن وارد می‌شود را خارج می‌کند. در اغلب موارد برای تفکیک بهتر صداهای ورودی این قطعه نیازمند تقویت‌کننده الکترونیکی است.






صدا

صدا یا صوت از انواع انرژی است که از تحرک ذرات ماده بوجود می‌آیند به این گونه که یک ذره با حرکت (برخورد) خود به ذره‌ای دیگر ذرهٔ دیگر را به حرکت در می‌آورد و به همین ترتیب است که صوت نشر می‌یابد. صدا ارتعاشیست که توسط حس شنوایی انسان درک میشود. ما معمولاً اصواتی که در هوا حرکت میکنند را میشنویم ولی صدا میتواند در گاز، مایع و حتی جامدات نیز حرکت کند.صدا ص َ (ع اِ) ۞ معرب «سدا» است ۞ و آن آوازی باشد که در کوه و گنبد وامثال آن پیچد و باز همان شنیده شود و در عربی نیز همین معنی را دارد .

سرعت صوت در جامدات بدلیل تراکم زیاد مولکولها، بیشتر از مایعات و در مایعات نیز بیشتر از گازها است. صوت بر خلاف امواج دیگر مانند نور و گرما فقط در محیطی نشر می‌یابد که ماده وجود داشته باشد و این بدین معناست که اگر بر سطح ماه (که هوایی وجود ندارد) انفجاری روی دهد شما هیچ وقت صدای آنرا نمی‌شنوید. از واحد دسی‌بل نیز برای اندازه گیری شدت صوت استفاده می‌کنند. محدودهٔ شنوایی انسان بین ۲۰ تا ۲۰۰۰۰ هرتز می‌باشد.






خصوصیات صدا

ویژگیهای صدا عبارتند از بسامد، طول موج، دامنه و سرعت
بسامد و طول موج

بسامد تعداد تغییرات فشار هوا در هر ثانیه در یک نقطه ی ثابت است که موج صدا در حال گذر از آن میباشد. یک چرخه ی نوسانی ساده در یک ثانیه برابر با یک هرتز است. طول موج برابر فاصله ی بین دو قله ی متوالی بوده که موج در مدت زمان یک چرخه ی نوسانی آنرا طی میکند.






سرعت صوت

سرعت انتشار صوت بستگی به نوع، دما و فشار محیطی که صوت در آن منتشر میشود دارد. در شرایط طبیعی از آنجایی که هوا تقریباً بصورت یک گاز کامل رفتار میکند سرعت صوت وابسته به فشار هوا نخواهد بود. در هوای خشک در دمای 20 درجه ی سانتیگراد سرعت صوت حدوداً 343 متر در ثانیه یعنی حدوداً یک متر در هر 3 هزارم ثانیه است. سرعت صوت همچنین وابسته به بسامد و طول موج است. بنابراین یک صوت 343 هرتزی طول موج یک متر خواهد داشت.

واژهٔ «صدا»، معرب (عربی‌شدهٔ) «سدا»ی پارسی است.






سرعت صوت

سرعت صوت (به انگلیسی: Speed of sound)، فاصله‌ای‌ست که یک موج صوتی در مدت زمان یک ثانیه در یک سیال می‌پیماید. سرعت صوت مشخص می‌کند که این موج در بازهٔ مشخصی از زمان چه مسافتی را طی می‌کند. در هوای خشک و در دمای ۲۰ درجه سانتی‌گراد (۶۸ درجه فارنهایت)، سرعت صوت ۳۴۳٫۲ متر بر ثانیه (۱۱۲۶ فوت بر ثانیه)، ۱۲۳۶ کیلومتر بر ساعت (۷۶۸ مایل بر ساعت) یا به طور تقریبی، یک کیلومتر در سه ثانیه و یا تقریباً یک مایل در پنج ثانیه است. در دینامیک سیالات، سرعت صوت در یک سیال (گاز یا مایع)، به عنوان یک ابزار حساب‌گری نسبی خود سرعت استفاده می‌شود. سرعت یک شیئ (فاصله بر زمان) تقسیم بر سرعت صوت در سیال به عنوان عدد ماخ شناخته می‌شود. اشیایئ که با سرعت بیشتر از یک ماخ حرکت می‌کنند، در سرعت‌های سوپرسونیک حرکت می‌کنند.

سرعت صوت در یک گاز ایده‌آل، مستقل از فرکانس است وتابعی از ریشهٔ دوم دمای مطلق است ولی به فشار یا چگالی آن گاز وابسته نیست. برای گازهای مختلف، سرعت صوت به طور معکوس به ریشه دوم میانگین جرم مولکولی گاز بستگی دارد.

در گفتگوهای مرسوم روزمره، منظور از سرعت صوت، سرعت موج صوتی در سیالِ هوا است. با این حال، سرعت صوت از یک ماده به مادهٔ دیگر متفاوت است. صوت در مایعات و جامدات نامتخلخل سریع‌تر از هوا، حرکت می‌کند. می‌توان گفت سرعت صوت در آب حدود ۴٫۳ برابر (۱۴۸۴ متر بر ثانیه)، و در آهن تقریباً ۱۵ برابر (۵۱۲۰ متر بر ثانیه) سرعت آن در هوای ۲۰ درجه سانتی‌گراد است.

سرعت صوت در فلزات و جامدات، مایعات، درون محیط‌هایی که فشردگی هوای آن‌ها نسبت به محیط آزاد بیشتر است، مناطق سرد و مرطوب و پست تر از دریا، مناطق سرد و مرطوب در کنار دریا، مناطق سرد و مرطوب بالاتر از دریا، مناطق مرطوب بالاتر از دریا نسبت به هوای آزاد در حالت عادی به ترتیب ذکر شده بیشتر است. صوت از محیط‌هایی که مادی نیستند (در آنجا ماده وجود ندارد) نمی‌تواند عبور کند.






صدای انسان

صدای انسان متشکل از صوتی است که با استفاده از تارهای صوتی توسط انسان ساخته شده و برای صحبت کردن ، آواز خواندن ، خندیدن ، گریه کردن ، فریاد زدن و ... مورد استفاده قرار می گیرد.

تارهای صوتی فقط بخشی از صدای اولیه ی انسان را می سازند و به طور کلی مکانیزم تولید صدای انسان را می توان به سه بخش ریه ، تارهای صوتی موجود در حنجره و مفاصل تقسیم بندی کرد.

ریه ( پمپ ) باید جریان هوا و فشار هوای کافی را برای ارتعاش تارهای صوتی تولید کند تارهای صوتی یک دریچه ی ارتعاشی هستند که جریان هوا را از ریه صادر می کند تا پالس های قابل شنیدنی را به صورت یک منبع صدا در حنجره تولید نمایند.عضلات حنجره ، طول و تنش تارهای صوتی را برای ایجاد تن صدایی بسیار خوب تنظیم می کنند .

مفاصل ( بخش هایی از دستگاه صوتی در قسمت فوقانی حنجره شامل زبان ، کام ، گونه ، لب ها و غیره ) ، صدای نشأت گرفته از حنجره را واضح و شفاف و به نوعی فیلتر می کنند و تا حدی می توانند جریان هوای حنجره را به عنوان یک منبع صدا تقویت یا تضعیف نمایند .

تارهای صوتی در ترکیب با مفاصل قادر به تولید آرایه های بسیار پیچیده ای از صدا هستند . تن یا لحن صدا می تواند بیانگر احساسات مختلف انسان باشد : مانند خشم ، تعجب یا شادی .

خواننده ها از صدای انسان به عنوان ابزاری برای ایجاد موسیقی استفاده می کنند .






مهندسی صوت
مهندسی صوت (به انگلیسی: Acoustical engineering) قسمتی از علم صوت است که با ضبط و تکثیر صوت توسط وسایل الکتریکی و مکانیکی سروکار دارد. مهندسی صوت از رشته‌های مختلفی بهره می‌برد از جمله: مهندسی برق، صوت‌شناسی (acoustics)، روانشناسی صوتی (psychoacoustics) و موسیقی.






نوروصوت‌شناسی

نوروصوت‌شناسی یا آکوستو-اپتیک (Acousto-optics) شاخه‌ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیلهٔ امواج صوتی می‌پردازد.

اپتیک تاریخچه‌ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه‌ای طولانی دارد که به زمان یونانیان باستان باز می‌گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه‌ای کوتاه‌است. این زمینه از علم با پیش بینی بریلوئن در مورد پراش نور بوسیلهٔ امواج صوتی منتشر شده در ماده در سال ۱۹۲۲ میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبهٔ اول تحت یک زاویهٔ فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال ۱۹۳۷ یک مدل عمومی تر را طراحی کردند که پراش‌های مرتبهٔ بالاتر را آشکار کند. این مدل بعدها در سال ۱۹۵۶ توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبهٔ پراشی مشخص بود.

اساس نوروصوت‌شناسی، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده‌است. موج صوتی یک شبکهٔ ضریب شکست در ماده به وجود می‌آورد و این شبکه توسط موج نوری "دیده" می‌شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






آکوستو اپتیک

آکوستو اپتیک شاخه ای از فیزیک است که به بررسی برهم کنش امواج نوری و امواج صوتی و به خصوص پراش لیزر به وسیله ی امواج صوتی می پردازد.







مقدمه

اپتیک تاریخچه ای بسیار طولانی دارد: از زمان یونانیان باستان تا عصر حاضر درست مانند اپتیک، آکوستیک نیز تاریخچه ای طولانی دارد که به زمان یونانیان باستان باز می گردد. در مقابل آکوستو اپتیک علمی بسیار نوین با تاریخچه ای کوتاه است. این زمینه از علم با پیش بینیبریلوئندر مورد پراش نور بوسیله ی امواج صوتی منتشر شده در ماده در سال 1922 میالادی آغاز شد. این پیش بینی ده سال بعد توسط دبای و سیرز و همچنین لوکاس و بیکارد آزمایش و تایید شد.

مورد خاص پراش مرتبه ی اول تحت یک زاویه ی فرود خاص (که بریلوئن هم پیش بینی آن را کرده بود) برای اولین بار توسط ریتوف دیده شد. رامان و نث در سال 1937 یک مدل عمومی تر را طراحی کردند که پراش های مرتبه ی بالاتر را آشکار کند. این مدل بعد ها در سال 1956 توسط فریزو توسعه پیدا کرد. مدل وی قابل تنظیم بر مرتبه ی پراشی مشخص بود.

اساس آکوستو اپتیک، تغییر ضریب شکست به خاطر حضور موج صوتی در ماده است. موج صوتی یک شبکه ی ضریب شکست در ماده به وجود می آورد و این شبکه توسط موج نوری "دیده" می شود. تغییر ضریب شکست که به خاطر نوسان فشار ایجاد شده، به وسیله آثار شکست نور، بازتاب نور، تداخل و پراش قابل شناسایی است.






ابزارهای الکترو اپتیکی

ابزار های آکوستو اپتیکی شامل سه گروه زیر هستند:

1- مدولاتور الکترو اپتیکی

با تغییر پارامترهای موج صوتی مانند دامنه، فاز، فرکانس، و قطبش می توان خواص موج نوری را مدوله کرد. برهمکنش نور و صوت همچنین امکان مدوله کردن زمانی و فضایی موج نوری را فراهم می آورد.

یک راه ساده برای مدوله کردن پرتوی اپتیکی عبور نور از محیطی است که در آن موج صوتی به طور متناوب روشن و خاموش شود. وقتی صوت خاموش باشد زاویه ی پراش صفر و نور بی تغییر است. با روشن شدن صوت پراش رخ می دهد و شدت صوت در زوایای پراش افزایش ی یابد. با ثابت نگاه داشتن فرکانس صوتی و تغییر در توان مولد صوت می توان این ابزار را به یک مدولاتور آکوستواپتیکی تبدیل نمود. در طراحی مدولاتور باید به نحوی عمل کرد که ماکزیمم شدت نور در پرتوی پراشیده رخ بدهد. مدت زمانی که طول می کشد صوت از ماده عبور کند نیز محدودیتی بر سرعت سوییچ کردن تحمیل می کند. برای همین پرتوی نوری را تا حد ممکن باریک می کنند. باریک ترین پرتوی نوری ممکن را حد پهنای باند می نامند.

2- فیلتر های الکترو اپتیکی

رابطه ی 4 ارتباطی را میان طول موج صوتی و طول موج نوری نشان می دهد. در واقع پرتوی نوری تابیده شده، اگر دارای تعداد زیادی طول موج باشد فقط در طول موج های خاصی پراکنده می شود. مابقی طول موج ها فیلتر خواهند شد.

3- منحرف کننده های الکترو اپتیکی

با ایجاد یک تغییر در فرکانس صوت می توان تغییر زاویه ای در پرتوی نوری ایجاد کرد.





پژواک

پژواک (اکو)، بازگشت صدا از دیوار یا سایر اشیاست. صدا با سرعتی مشخّص و ثابت (نزدیک به ۳۴۴ متر بر ثانیه) حرکت می‌کند؛ بنابراین می‌توانیم با استفاده از پژواک، فاصلهٔ برخی از اشیا را محاسبه کنیم. دستگاه عمق‌سنج کشتی، برای محاسبهٔ عمق دریا از پژواک بهره می‌گیرد.

پژواک، خفّاش را قادر می‌سازد تا در تاریکی پرواز کند. رادار نیز از خاصیّت پژواک (وبا استفاده از امواج رادیویی) در کشف هدف بهره می‌گیرد.





فرامواد

متامتریال یا فرامواد به ماده مرکبی گفته می‌شود که دارای خواص نامتعارف الکترومغناطیس در ساختار وجودی خود است. آنچه این مواد را غیر معمول کرده است، خاصیت ضریب شکست منفی نور در آنها است، به این معنا که این مواد نور را در جهت مخالف مواد عادی منکسر می‌کنند. مواد الکترومغناطیس تشکیل دهنده آنها می‌تواند با دستکاری مختصر و دقیق ساختارشان «تنظیم» نیزبشود.

این مواد از ترکیب میله‌های ریز و مجموعه‌ای از حلقه‌های فلزی و مانند آنان ساخته شده است که برای اولین بار توسط دیوید اسمیت (David Smith استاد دانشگاه کالیفرنیا) ساخته شد. خواص نامتعارف این مواد سبب شده است از آنها در زمینه‌های مختلف استفاده شود از جمله آنها در مهندسی مایکروویو است که می‌توان به کاربرد در موجبرها، جبران پاشندگی، آنتن‌های هوشمند، لنزها و نمونه‌های فراوان دیگر استفاده کرد.
11:16 pm
ساختمان
ساختِمان سازه‌ای است که برای سکونت و به عنوان سرپناه یا برای کار ساخته می‌شود که محیط را به دو بخش بیرون و درون تقسیم می‌کند. ساختمان‌هایی که از نظر بلندا از اندازه مشخصی بلندتر باشند ساختمان‌های بلندمرتبه گفته می‌شود. در ایران ساختمان بلندمرتبه طبق مصوبه سال ۱۳۷۷ شورای عالی شهرسازی و معماری به ساختمان‌های بالاتر از شش طبقه گفته می‌شود.ساختمان‌های بسیار بلند نیز اصطلاحاً آسمان‌خراش یا برج نامیده می‌شوند.به ساختمان‌های بزرگ و باارزش قدیمی بیشتر عِمارَت گفته می‌شود.





انواع ساختمان
در معنای کلی هر سازه‌ای را می‌توان ساختمان نامید، در اینجا منظور از ساختمان بناهای ساخته شده با مصالح بنایی (آهن، سیمان، گچ، آجر و ...) می‌باشد.
اصولا ساختمان را از لحاظ مصالح مصرفی و نوع کاربرد آن می‌توان به دو دسته تقسیم نمود.



انواع ساختمان از لحاظ سازه

ساختمان‌های بتنی

ساختمانی است که برای اسکلت اصلی آن از بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده یا آجدار) استفاده شده باشد.

در این نوع ساختمان، سقفها به وسیله تاوه (دال)های بتنی پوشیده می‌شود، و یا از سقف‌های تیرچه بلوک و یا سایر سقف‌های پیش ساخته استفاده می‌شود.
برای ساخت دیوارهای جدا کننده (پارتیشن‌ها) ممکن است از انواع آجر مانند سفال تیغه‌ای، آجر ماشینی سوراخ دار، آجر معمولی فشاری، فوم استاندارد ضد حریق، تیغه گچی و یا چوب استفاده شود.
همچنین ممکن است از دیوارهای بتن آرمه هم استفاده شود که در این صورت نوع این دیوارها دیوار برشی می‌باشد.
در این نوع ساختمان برای ساخت شاه تیرها و ستون‌ها از بتن آرمه (بتن مسلح) استفاده می‌شود.





ساختمان‌های فلزی

در این نوع ساختمان‌ها برای ساختن ستون‌ها و پل‌ها از پروفیل‌های فولادی استفاده می‌شود.
در ایران معمولاً برای ساختن ستون‌ها از تیر آهن‌های I دوبل و یا بال پهن‌های تکی استفاده می‌نمایند.
برای اتصالات از نبشی-تسمه و برا س ل سیب ی زیر ستون‌ها از صفحه فولادی (بیس پلیت) استفاده می‌شود و معمولاً دو قطعه را به وسیله جوش به هم متصل می‌نمایند (استفاده از پرچ یا پیچ و مهره نیز متداول است).
در این نوع ساختمان برای مقابله با زلزله از باد بندهای فلزی استفاده می شود.





ساختمان‌های آجری

برای ساختمان‌های کوچک که از 2 طبقه تجاوز نمی‌نمایند می‌توان از این نوع ساختمان استفاده نمود.
اسکلت اصلی این نوع ساختمان‌ها آجری بوده و برای ساختن سقف‌ها در ایران معمولاً از پروفیل‌های فولادیI و آجر به صورت طاق ضربی استفاده می‌گردد؛ و یا از سقف تیرچه و بلوک استفاده می‌شود.
در این نوع ساختمان برای مقابله با نیروهای جانبی (نظیر زلزله) باید حتماً از شناژهای روی کرسی چینی و زیر سقف‌ها استفاده شود؛ همچنین در ساختمان‌های آجری معمولاً دیوارهای حمال در طبقات مختلف روی هم قرار می‌گیرند و اغلب پارتیشن‌ها نیز همین دیوارهای حمال می‌باشند.
حداقل عرض دیوارهای حمال نباید از ۳۵ سانتی متر کمتر باشد.





ساختمان‌های خشتی و گلی

اسکلت اصلی این نوع ساختمان‌ها از خشت خام و گل می‌باشد و تعداد طبقات آن از یک طبقه تجاوز نمی‌کند و در مقابل نیروهای جانبی همانند زلزله به هیچ وجه مقاومت نمی‌نمایند.





ساختمان‌های چوبی

این نوع ساختمان‌ها در مناطقی که چوب با قیمت ارزان در دسترس است ساخته می‌شوند،مانند شهرهای جنوبی کشور اتریش، بعضی ایالت‌های کشور آمریکا و ...
ساختمان‌های چوبی در ایران به علت کمبود منابع کمتر ساخته می‌شود.




ساختمان‌های ترکیبی

ممکن است ساختمانی از دو یا چند نوع از انواع فوق ساخته شود مانند ساختمان‌های فلزی-بتنی و یا فلزی-آجری و ... .
انواع ساختمان از لحاظ نوع کاربرد
ساختمان‌ها از لحاظ کاربرد به انواع ساختمان‌های مسکونی، اداری، بیمارستان‌ها، انبارها، مدارس و مکان‌های عمومی مانند باشگاه‌ها و ورزشگاه‌ها و ... تقسیم می‌شود.



ساختمان‌سازی

ساختمان‌سازی معمولاً فرایندی زمان‌بر بوده‌است، اما در دهه‌های اخیر با استفاده از قطعات پیش‌ساخته می‌توان ساخت ساختمان‌ها را سریع‌تر به پایان رساند.






تاریخچه ساخت‌وساز

بر اساس متون تاریخی و برخی از بناهای برج و بارودار اوایل سده‌های میانه که باستانشناسان شوروی سابق مورد کاوش قرار داده‌اند، این نوع بناها در آسیای میانه بیشترین حضور را داشته‌اند با تثبیت مرزهای جهان اسلام، فعالیت مبارزان در راه دین کاهش یافت، ولی بناهایی که در بین راه‌ها ساخته شده بودند، جهت اسکان مسافران همچنان باقی ماندند.

رباط سوسه در تونس که احتمالا بین سال‌های ۷۷۱ و ۷۸۸ تاسیس شده، یک ساختمان مربعی شکل دو طبقه با برج‌های زاویه‌ای و یک ورودی مستحکم و حیاط باز با حجره‌های پیرامونی است و با مسجد ستون داری که در نخستین طبقه و در بالای درب ورودی قرار گرفته آن را از نظر پلان با کاروانسراهای عصر خود متمایز کرده است.

از دیگر نمونه‌های رباط‌ها در مغرب زمین به ""رباط ملک"" که تقریبا یک سده بعد بر سر راه بخارا و سمرقند بنا شده است، می‌توان نام برد که ظاهراً شبیه به یک قلعه است. نمای پیشین تورفتهٔ آن یادآور عمارات قصر گونهٔ همان منطقه است. این رباط نیز دارای برج‌های زاویه‌ای و پایه‌های نیم دایره‌ای می‌باشد و آرایش فضاهای داخلی آن با اتاق‌هایی که به حیاط مرکزی متصل می‌شود نشان از حقیقت فرم کاروانسرایی بودن آن دارد. ابن حوقل، جغرافیدان قرن دوازدهم، به رباط‌ها و کاروانسراهای شهری در منطقه ی"پالرمو"اشاره می‌کند که در آن زمان برای تجمع مسافران ساخته شده بودند و اما در جهان مدرن و با پیشرفت‌های زندگی بشر، اقامتگاه‌ها شکل تازه‌ای به خود گرفته و در اغلب عناوین مختلف با کاربری‌های گوناگون و شرایط مالی و اقتصادی استفاده کنندگان در بافت‌های شهری سراسر جهان توسعه یافته‌اند. در دورهٔ سلجوقی حدود صد کارواسرا در مناطق آناتولی و ترکیه ساخته شده است.

فضاهایی همچون هتل، متل، سوئیت، هتل آپارتمان، مراکز جهانگردی، ویلاها و کمپ‌های جهانگردی و غیره. از دسته فضاهایی هستند که در نقاط مختلف ارائه خدمات می‌نمایند صنعت هتلداری نوین آغاز خود را به کشورهای اروپایی خصوصاً سوئیس مدیون است. این سعنت در ابتدات در ساخاتمانی‌های کوچک و محقری که برای گشودن آنها از کلیدهای چوبی استفاده می‌شد. شکل گرفت و در همین هتل‌های کوچک انواع خدمات و سرویس‌ها به مشتریان عرضه می‌گردید. صاحبان هتل‌ها بیشتر طبقهٔ ثروتمند و اشارف بودند. کلمه «hotel» از حدود سال‌های ۱۷۶۰ میلادی برای نامیدن مراکز اقامتی به کار گرفته شد.

رشد واقعی و تکامل این صنعت در آمریکا با گشایش «سیتی هتل» در نیویورک درسال ۱۷۹۴ آغاز شد و این نخستین ساختمانی بود که به ارائه خدمات مربوط به هتلداری اختصاص می‌یافت. فعالیتهای این مرکز به ایجاد انگیزش و رقابت در میان شهرهای دیگر انجامید به طوری که سرمایه‌داران متعدد به این صنعت روی آوردند و هتلهای چندی تأسیس کردند، اما گسترش افسانه‌ای و شگفت آور این صنعت به سال‌های قرن بیستم بر می‌گردد. سال ۱۹۳۰ میلادی با رویدادی در رکورد صنعت جهانگردی روبه رو بوده، ولی در آغاز دههٔ ۱۹۵۰ شکوفایی این صنعت در کل دنیا دیده شد. مراکزی نیز با نام مُتل تنها در آمریکای شمالی ساخته شدند. تاسیس هتل‌های زنجیره‌ای در همین زمان و به منظور مشارکت سرمایه داران شروع شد. هتل‌های زنجیره ای‌هایت، شرایتون، هالیدی، هیلتون، پلازا و غیره از این دسته‌اند.




کوته مرتبه
این گونه ساختمان‌ها بسیار ناهمگن بوده، تمامی فرم‌های ساخت‌های متمرکز غیر شهری از جمله: شکل گیری خانه‌های یک خانواری، مجموعه کاپت، ساختمان‌های یک یا چند ردیفی، چند طبقه‌هایی که در آنها آپارتمان‌ها برهم انباشته و به هم متصل هستند و برای شکل گیری سکونت با هم در می‌آمیزند، شکل گیری ((شهرهای جدید)) انگلیسی تا مجموعه‌های بسیار کوچک درون شهری را در بر می‌گیرند. در این گونه مجموعه‌ها، شاهد مرزبندی بسیار دقیق بین فضاهای خصوصی، نیمه خصوصی، نیمه عمومی و کاملا عمومی هستیم بنابراین اختصاص منابع و فضای بسیار برای دستیابی به اهداف دسترسی کاملا پذیرفته شده است به گونه‌ای که هر یک از ساکنان بتوانند ورودی شخصی خود را داشته باشد، خواه این دسترسی از راه پله‌های بیرونی یا شکاف دهندهٔ حجم ساختمان، از سمت خیابان در تراز همکف یا حاصل تراس بندی مصنوعی یا طبیعی باشد.





خانه‌های ردیفی
در خانه‌های یک خانواری که به صورت ردیفی طراحی می‌شوند، آزادی‌های طراحی کمتری مطرح است. در اینجا فضاهای بیرونی کاملاً به عرصه‌های عمومی یا نیمه عمومی بر ساختمان و باغ خصوصی در حیاط پشتی تقسیم می‌شوند. فضای سبز خصوصی و تقلیل یافته در این گونه ساختمان‌ها را می‌توان به شیوه‌های مختلف از جمله پرچین، دیوار، حصار، آلاچیق و پارکینگ دیوارک بندی کرد. جهت گیری ساختمان فقط به دو سمت امکان‌پذیر است. این گونه بناها در دوره‌های برنامه ریزی شهری، دارای ارتفاع، عرض و عمق انعطاف‌پذیر هستند بدین گونه می‌توانند طرح‌های کلی متفاوتی داشته باشند. این ساختمان‌ها، به علت تراکم مطلوب غالبا در دو طبقه یا بیشتر هستند. چیدمان سادهٔ فضای عملکردی آنها به صورتی که نشیمن در قسمت زیرین و اتاق خواب در قسمت بالا باشد، در گونه‌های جدیدتر خانه‌های ردیفی، به صورت ارتفاع متفاوت اتاق‌ها و گونه‌های دو ترازه که دارای فضاهایی سیال است طراحی می‌شوند. آنچه هنوز بسیار کمیاب است ساختمانی ردیفی است که پوستهٔ فضایی آن توسط ساکنان خانه تقسیم بندی شده باشد. پلان‌های جدید، با چرخش، تورفتگی و پس رفتگی از یکنواختی خانه‌های ردیفی می‌کاهند.
ساعت : 11:16 pm | نویسنده : admin | مطلب بعدی
انبوه سازان | next page | next page